Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference

نویسندگان

  • Edward Meeds
  • Max Welling
چکیده

We describe an embarrassingly parallel, anytime Monte Carlo method for likelihood-free models. The algorithm starts with the view that the stochasticity of the pseudo-samples generated by the simulator can be controlled externally by a vector of random numbers u, in such a way that the outcome, knowing u, is deterministic. For each instantiation of u we run an optimization procedure to minimize the distance between summary statistics of the simulator and the data. After reweighing these samples using the prior and the Jacobian (accounting for the change of volume in transforming from the space of summary statistics to the space of parameters) we show that this weighted ensemble represents a Monte Carlo estimate of the posterior distribution. The procedure can be run embarrassingly parallel (each node handling one sample) and anytime (by allocating resources to the worst performing sample). The procedure is validated on six experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embarrassingly parallel sequential Markov-chain Monte Carlo for large sets of time series

Bayesian computation crucially relies on Markov chain Monte Carlo (MCMC) algorithms. In the case of massive data sets, running the Metropolis-Hastings sampler to draw from the posterior distribution becomes prohibitive due to the large number of likelihood terms that need to be calculated at each iteration. In order to perform Bayesian inference for a large set of time series, we consider an al...

متن کامل

A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data

Markov chain Monte Carlo (MCMC) methods have proven to be a very powerful tool for analyzing data of complex structures. However, their computer-intensive nature, which typically require a large number of iterations and a complete scan of the full dataset for each iteration, precludes their use for big data analysis. In this paper, we propose the so-called bootstrap Metropolis-Hastings (BMH) al...

متن کامل

Post - Inference Methods for Scalable Probabilistic Modeling

Post-Inference Methods for Scalable Probabilistic Modeling by Willie Neiswanger This thesis focuses on post-inference methods, which are procedures that can be applied after the completion of standard inference algorithms to allow for increased efficiency, accuracy, or parallelism when learning probabilistic models of big data sets. These methods also aim to allow for efficient computation give...

متن کامل

Parallel Pseudorandom Number Generation

Monte Carlo applications are widely perceived as embarrassingly parallel. (Monte Carlo enthusiasts prefer the term “naturally parallel” to the somewhat derogatory “embarrassingly parallel” coined by computer scientists.) The truth of this notion depends, to a large extent, on the quality of the parallel random number generators used. It is widely assumed that with N processors executing N copie...

متن کامل

Embarrassingly Parallel Variational Inference in Nonconjugate Models

We develop a parallel variational inference (VI) procedure for use in data-distributed settings, where each machine only has access to a subset of data and runs VI independently, without communicating with other machines. This type of “embarrassingly parallel” procedure has recently been developed for MCMC inference algorithms; however, in many cases it is not possible to directly extend this p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015